60 research outputs found

    A GA perspective of the energy requirements for manipulators maneuvering in a workspace with obstacles

    Get PDF
    This paper proposes a genetic algorithm to generate trajectories for robotic manipulators. The objective is to minimze the ripple in the trajectory time evolution and to minimize the actuator energy requirements without colliding with any obstacles in the workspace. The article presents the results for several redundant and hyper-redundant manipulators.N/

    Entropy diversity in multi-objective particle swarm optimization

    Get PDF
    Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly by accessing the final results. In the present paper, a different approach is proposed, by using Shannon entropy to analyzethe MOPSO dynamics along the algorithm execution. The results indicate that Shannon entropy can be used as an indicator of diversity and convergence for MOPSO problems

    Dynamical modelling of a genetic algorithm

    Get PDF
    This work addresses the signal propagation and the fractional-order dynamics during the evolution of a genetic algorithm (GA). In order to investigate the phenomena involved in the GA population evolution, the mutation is exposed to excitation perturbations during some generations and the corresponding fitness variations are evaluated. Three distinct fitness functions are used to study their influence in the GA dynamics. The input and output signals are studied revealing a fractional-order dynamic evolution, characteristic of a long-term system memory

    Manipulator trajectory planning using a MOEA

    Get PDF
    Generating manipulator trajectories considering multiple objectives and obstacle avoidance is a non-trivial optimization problem. In this paper a multi-objective genetic algorithm based technique is proposed to address this problem. Multiple criteria are optimized considering up to five simultaneous objectives. Simulation results are presented for robots with two and three degrees of freedom, considering two and five objectives optimization. A subsequent analysis of the spread and solutions distribution along the converged non-dominated Pareto front is carried out, in terms of the achieved diversity

    Multi-Criteria Optimization Manipulator Trajectory Planning

    Get PDF
    In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions

    Robotic synthesis using a hierarchical multi-objective evolutionary algorithm

    Get PDF
    This paper addresses the robotic manipulator synthesis problem considering multiple design criteria simultaneously. This is a complex problem suitable for the application of multi-objective genetic algorithms. Thus, an hierarchical multi-objective genetic algorithm is proposed to generate a robot structure and corresponding manipulating trajectories. The design aim is to minimize the trajectory space ripple, the initial and final torques while optimizing the mechanical structure. Simulation results are presented concerning the solution of a structure synthesis problem with the optimization of three objectives.N/

    Fractional order dynamics in a Genetic Algorithm

    Get PDF
    This work addresses the fractional-order dynamics during the evolution of a Genetic Algorithm population (GA) for generating a robot manipulator trajectory. The GA objective is to minimize the trajectory space/time ripple without exceeding the torque requirements. In order to investigate the phenomena involved in the GA population evolution, the mutation is exposed to excitation perturbations and the corresponding fitness variations are evaluated. The input/output signals are studied revealing a fractional-order dynamic evolution, characteristic of a long-term system memory.N/

    Structure and trajectory optimization for redundant manipulators

    Get PDF
    This paper proposes a genetic algorithm to generate a robot structure and the required manipulating trajectories. The objective is to minimize the space/time ripple in the trajectory without colliding with any obstacles in the workspace, while optimizing the mechanical structure.N/

    Fractional dynamics in genetic algorithms

    Get PDF
    This paper investigate the fractional-order dynamics during the evolution of a Genetic Algorithm (GA). In order to study the phenomena involved in the GA population evolution, themutation is exposed to excitation perturbations during some generations and the corresponding fitness variations are evaluated. Three similar functions are tested to measure its influence in GA dynamics. The input and output signals are studied revealing a fractional-order dynamic evolution.N/

    A Real-Time Optimization for 2R Manipulators

    Get PDF
    This work proposes a real-time algorithm to generate a trajectory for a 2 link planar robotic manipulator. The objective is to minimize the space/time ripple and the energy requirements or the time duration in the robot trajectories. The proposed method uses an off line genetic algorithm to calculate every possible trajectory between all cells of the workspace grid. The resultant trajectories are saved in several trees. Then any trajectory requested is constructed in real-time, from these trees. The article presents the results for several experiments
    • …
    corecore